
William & Mary
W&M ScholarWorks

Dissertations, Theses, and Masters Projects Theses, Dissertations, & Master Projects

2003

Location Management in a Mobile Object
Runtime Environment
andriy Fedorov
College of William & Mary - Arts & Sciences

Follow this and additional works at: https://scholarworks.wm.edu/etd

Part of the Computer Sciences Commons

This Thesis is brought to you for free and open access by the Theses, Dissertations, & Master Projects at W&M ScholarWorks. It has been accepted for
inclusion in Dissertations, Theses, and Masters Projects by an authorized administrator of W&M ScholarWorks. For more information, please contact
scholarworks@wm.edu.

Recommended Citation
Fedorov, andriy, "Location Management in a Mobile Object Runtime Environment" (2003). Dissertations, Theses, and Masters Projects.
Paper 1539626829.
https://dx.doi.org/doi:10.21220/s2-7x0m-dp11

https://scholarworks.wm.edu?utm_source=scholarworks.wm.edu%2Fetd%2F1539626829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etds?utm_source=scholarworks.wm.edu%2Fetd%2F1539626829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/etd?utm_source=scholarworks.wm.edu%2Fetd%2F1539626829&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarworks.wm.edu%2Fetd%2F1539626829&utm_medium=PDF&utm_campaign=PDFCoverPages
https://dx.doi.org/doi:10.21220/s2-7x0m-dp11
mailto:scholarworks@wm.edu

LOCATION MANAGEMENT IN A MOBILE OBJECT

RUNTIME ENVIRONMENT

A Thesis

Presented to

The Faculty of the Department of Computer Science

The College of William & Mary in Virginia

In Partial Fulfillment

Of the Requirements for the Degree of

Master of Science

by

Andriy Fedorov

2003

APPROVAL SHEET

This thesis is subm itted in partial fulfillment of

the requirements for the degree of

Master of Science

Andriy Fedorov

Approved by the Committee, December 2003

Nfi^oaTr^ciirisochoides, Chair

Phil Kearns

Bruce B.Towekamp

(/ Dimitrios S. Nikolopo

Xiaodong Zhang

Table of C ontents

A cknow ledgm ents v

List o f F igures vi

A bstract viii

1 In troduction 2

2 R untim e System 5

2.1 F u n c tio n a lity .. 5

2.2 Design C o n sid e ra tio n s .. 8

2.3 Im plem entation ... 11

2.4 Related W o rk .. 14

2.5 Discussion and Future W o rk .. 17

3 L ocation M anagem ent P olicies 19

3.1 O v e rv ie w ... 20

3.1.1 Parallel D istributed C o m p u ta tio n s ... 20

3.1.2 Mobile Communication N etw orks... 22

iii

3.1.3 Mobile Agents C om puting .. 27

3.2 Location Management in C l a m ... 31

4 E valuation 39

4.1 Experimental Environment ... 39

4.1.1 Hardware P la t fo rm s .. 39

4.1.2 B enchm arks.. 41

4.1.2.1 Synthetic M icrobenchm ark .. 41

4.1.2.2 PCD T End-to-End A pplication................................ 44

4.2 Performance Evaluation of the Runtime S y s tem ... 46

4.3 Evaluation of the Location Management P o l ic ie s ... 49

4.4 Discussion ... 62

5 C onclusions and Future W ork 65

B ibliography 67

V ita 71

iv

ACKNOWLEDGMENTS

I owe a lot to my advisor Nikos Chrisochoides for invaluable discussions, guidance and
continuous support. I would like to thank professor Phil Kearns for his eye-opening and
inspiring lectures and assignments. This thesis would never be written without Allen and
Meg Tucker, who showed me the way to William and Mary, and without those who helped
me during my first months in the USA: Ken Blakely, Vanessa Godwin, Denis Kenzior, Brian
Lamprecht, Bob and Debby Noonan, and many others. Thanks to Kevin Barker, Andrey
Chernikov, Chaman Singh Verma and Tom Crockett for sharing their experience and for
being very patient answering my numerous questions. Thanks to The United States of
America for the opportunities I have here in advancing myself.

This work was partially supported by the National Science Foundation grants ITR-
0312980, NGS-0203974, ACI-0085969, EIA-9972853 and CCR-0049068.

I thank my parents, who always believe in me, for their support and encouragements.

List of Figures

2.1 Potential deadlock induced by buffering... 10

2.2 The architecture of Clam.. 12

2.3 The initial architecture of PREM A.. 15

3.1 Example architecture of a mobile communication network..................... 23

3.2 Design space for MA communication protocols (Cao et al, [19])..................... 29

3.3 Design space for location management policies development............................ 32

3.4 Summary of the implemented location management policies............................ 35

3.5 Lazy Forwarding LMP... 38

3.6 Jum p Update LMP... 38

3.7 Path Compression LMP.. 38

3.8 Broadcast U pdate LMP... 38

3.9 Home-Based LMP... 38

3.10 Eager Update LMP.. 38

4.1 Simplified configuration of the CS Network Testbed.. 40

4.2 Sorting network for eight inputs... 41

vi

4.3 netsort sortnode structure... 42

4.4 Example of inserting a boundary point in PC D T....................................... 44

4.5 Maximum achieved bandwidth for small and large message sizes........... 47

4.6 Mobile object message latency te s t... 48

4.7 netsort4 benchmark performance... 49

4.8 PCDT runtime breakdown without load-balancing and with PREMA diffu

sion load-balancing... 50

4.9 Execution times of netsort4 ... 51

4.10 Execution times of netsort5 ... 52

4.11 Number of hops for a message to reach the object; netsort4, 32 processors. 53

4.12 Number of hops for a message to reach the object; netsort4, 64 processors. 54

4.13 Breakdown of point-to-point message types for netsort^ , 32 processors. . . . 55

4.14 Breakdown of point-to-point message types for netsort5 , 32 processors. . . . 56

4.15 netsort4 benchmark with 1 Kbyte message payload.. 57

4.16 Execution times of netsort4 with A « 20.. 58

4.17 Execution times of netsort5 with A « 20.. 59

4.18 Number of hops for a message to reach the object, A « 20; netsort4i 32

processors.. 60

4.19 netsort4 execution time on 100 Mbps and 10/100 Mbps configurations. . . . 63

4.20 PCDT benchmark execution tim e... 63

4.21 Number of hops for a message to reach the object; PCDT benchmark, 32

processors.. 64

4.22 Difference in the object migration intensity as a side-effect of changing LMP. 64

vii

ABSTRACT

This thesis focuses on two im portant aspects of runtime support for parallel and distributed
applications. First, we present the design and implementation of Clam, a runtime system
which provides one-sided communication with the support for global name-space, object mi
gration, and transparent routing of messages to objects. Second, we perform a comparative
study of techniques used for managing location information of mobile objects within Clam.
The performance evaluation of the runtime system justifies the design decisions we have
made and shows the advantages of the implementation over similar libraries. The study of
location management reveals th a t for some distributed applications an intelligent choice of
location management policy is a crucial contributing factor to the application performance.

LOCATION MANAGEMENT IN A MOBILE OBJECT

RUNTIME ENVIRONMENT

Chapter 1

Introduction

In this thesis we focus on software runtime support system for asynchronous adaptive and

irregular applications, like Adaptive Mesh Generation and Refinement (AMR). Specifically,

we describe an efficient implementation of one-sided communication and global address

space, which is crucial for these applications. Existing runtime environments either do not

have these capabilities or have a number of caveats, like poor portability, th a t complicate

their wide-spread usage.

There are two major contributions of this thesis. First, we design and implement an

efficient portable runtime system tha t addresses the computation and communication re

quirements of applications like parallel AMR. Our approach is based on careful balance of

three im portant issues: correctness, performance, and ease-of-use. The preliminary results

show tha t the implementation is portable, easy to use, and introduces low overheads over

the underlying low-level communication substrate. Second, we present an evaluation of the

location management mechanisms implemented within the runtime system. To the best of

our knowledge, location management has not been studied previously in this context. Our

results indicate th a t location management is critical for certain applications and thus must

be carefully considered during the application design.

2

CH APTER 1. IN TRO D U C TIO N 3

The runtime system we present here provides customized runtime support for asyn

chronous adaptive and irregular applications. The computations in such applications can

be tightly or partially coupled, or decoupled. The level of coupling is determined by the in

tensity of the communication and by the level of dependency between communicating tasks.

Communication intensive applications generate large amounts of messages in short time pe

riods. For AMR applications this means from tens to hundreds of thousands of messages

per second. Some applications can postpone processing of the incoming messages without

delaying the computation within a task. Others have to wait for incoming communication,

or suspend until the previously posted communication is acknowledged by the partner task.

We call computations tightly coupled if they have strong dependencies (i.e., require syn

chronous communication) and are communication intensive. If the communication is not

intensive, but weak dependencies are present (i.e., communication can be asynchronous),

the computation is called partially (or loosely) coupled. Applications which do not have

any communication and /or dependencies are called decoupled.

The Portable Runtime Environment for Mobile Applications (PREMA) is a framework

created to support the development of AMR-like applications. The Communication Layer

for Asynchronous Mobile Computations (Clam) we describe in this thesis serves as a com

munication component of the PREMA framework and is superior to the previously used

implementation, as we show in our performance evaluation.

The problem of location management within Clam emerges from the adaptivity of the

applications we aim to support. Because of this adaptivity, dynamic load-balancing is

critical. Mobile object abstraction is provided by Clam for the purposes of balancing work-

units among the processors. The data dependencies often present in an application require

C H APTER 1. INTRO D U CTIO N 4

mechanisms to “communicate” with the non-local work-units (objects). A Location Man

agement Policy (LMP) implementation enables this communication in the context of object

migration, or mobility.

In this thesis we survey existing approaches for location management. We identify a set

of diverse LMPs, describe their strengths and weaknesses, perform an experimental study

to evaluate their properties and their impact on the performance of the selected benchmark

applications.

The rest of the thesis is structured as follows. In Chapter 2 we concentrate on the

details of design and implementation of Clam. Chapter 3 introduces the problem of loca

tion management, surveys existing approaches in related areas, and describes in detail the

LMPs we selected for the evaluation. Chapter 4 presents our performance data from the

evaluation of the runtime system and the selected LMPs. We conclude with the summary

of contributions and directions for future work in Chapter 5.

Chapter 2

R untim e System

In this chapter we describe the design and implementation of the light Communication Layer

for Asynchronous Mobile Computations (Clam)1. Our design and implementation are based

on the balance of three im portant issues: correctness, performance, and ease-of-use. Our

preliminary experience with Clam as a component of the Portable Runtime Environment

for Mobile Applications (PREMA) shows an improvement in the overall quality of PREMA

software in term s of portability, performance, and effectiveness.

2.1 Functionality

The computations associated with parallel adaptive and irregular applications, like mesh

generation and refinement, are either tightly coupled or partially coupled. Computation and

communication patterns for these applications are variable and unpredictable. One-sided

communication paradigm substantially simplifies code development and maintainability for

such applications. Clam supports one-sided communication in the context of data/object

migration. Its functionality can be grouped as follows:

xThe name, Clam, reflects the desired features of the implementation: it should be small, strong and
viable.

5

CH APTER 2. RU N TIM E SY S T E M 6

• re m o te m em o ry o p e ra tio n s : put and get;

• re m o te se rv ice re q u e s t (R S R): invocation of an application-defined function on a

remote processor;

• m obile o b je c t fu n c tio n a lity : creation, migration, and messaging for mobile objects.

Each processor is assigned a unique identifier. A user-defined set of functions, which

should correspond to the predefined prototypes, is registered with the runtime system.

These functions are called handlers. A handler can be invoked on a remote processor

using the Clam API. There are four types of handlers: (1) memory operation, (2) RSR

(fixed number of arguments), (3) RSRN (takes buffer as an argument) and (4) mobile object

message handlers.

The targeted applications require efficient asynchronous communication support. Com

munication primitives provided by Clam are non-blocking. Clam can communicate directly

using user buffers and calling user-specified callback function when the communication is

complete. If no callback function is provided, Clam will copy user data into a new buffer,

so tha t the buffer can be reused upon the function return.

The mobile object functionality provides support for application adaptivity. Load-

balancing is crucial in AMR applications. The application workload cannot be statically

distributed because it is changing throughout the execution. Thus, work-units should m i

grate among the processors. The workload local to a processor can be represented by the

set of data objects in the memory of tha t processor (this is a particularly useful abstraction

for AMR applications). During load-balancing, local work-units (objects) can migrate to

the address space of remote processors. However, the computation is not decoupled in the

C H APTER 2. RU NTIM E SY S T E M 7

general case: there may be dependencies between work-units located on different processors.

Hence the requirement for communication support in the context of mobile objects.

Applications which use Clam can associate a mobile pointer with any data object local

to the processor’s memory. This procedure makes tha t object mobile in the context of

Clam, and thus in the context of the application. Given a mobile pointer to an object,

the application can send a message to th a t object. When the application sends a message

to a mobile pointer, it specifies the target mobile pointer, the message handler, and the

arguments to be passed to the handler. The runtime system is responsible for delivery of

this message to the object. A message will result in an invocation of the message handler

on the processor, where the recipient object is currently located. W hen an object has to be

migrate from one processor to another, it should be uninstalled using Clam API and after

migration installed a t the new processor.

Clam is using single-threaded execution model. A separate thread may be used for

communication purposes (although no additional threads are used in the current implemen

tation). The application should explicitly call poll function of Clam in order for pending

handlers to be executed; handlers are executed synchronously.

In addition to the described functionality, Clam provides barrier synchronization and

quiescence detection primitives. Quiescence detection implements Safra’s term ination de

tection algorithm described by Dijkstra in [24]. The system is quiescent when no handlers

are awaiting execution and there is no pending communication. Such functionality proved

to be essential for application-level term ination detection. Efficient term ination detection

is crucial for asynchronous application and for parallel mesh generation in particular.

CH APTER 2. RU N TIM E SY ST E M 8

2.2 Design Considerations

There are three im portant issues to be considered in the design of a runtime system: correct

ness, performance and ease-of-use. The design of Clam attem pts to balance these aspects.

The importance of correctness is specifically emphasized because of the one-sided nature

of communication. In binary send/receive communication the application is responsible for

avoiding communication deadlocks. One-sided communication is usually implemented on

top of binary send/receive provided by the operating system. Thus, the burden of deadlock

prevention is the responsibility of the runtime system. The one-sided communication func

tionality of Clam is similar to this of Active Messages (AM) [48]. However, the limitations

imposed by AM are too strict for the AMR applications. Clam relaxes these requirements:

the only limitation for user handlers is tha t polling cannot be performed within the han

dler. The effect is twofold. The relaxing of the model gives application developers more

flexibility. At the same time, it introduces the possibility for deadlock: unrestricted com

munication can eventually lead to memory exhaustion, which cannot be prevented by the

runtime system.

Performance of the runtime system is determined by a number of components. First,

the overheads introduced by the runtime system over the underlying communication should

be small. Second, the use of the runtime system should not diminish the scalability of the

application. Finally, the runtime system should not restrict the capability of application

to use otherwise available system functionality. Minimum number of intermediate layers

within the system results in fewer memory copies and faster message processing. Although

it is appealing to implement mobile object messaging on top of the Remote Service Request

C H APTER 2. RU NTIM E SY ST E M 9

functionality, this would inevitably lead to additional overheads. The mobile object message

functionality is implemented on the same level as RSR in Clam. Our performance evaluation

shows the advantages of this design decision.

The Clam design addresses the ease-of-use requirement by defining small, nonetheless

powerful, API. Discussions with applications developers made it possible to identify the

core functionality required from the runtime system, define its clear semantics and avoid

redundancy.

Portability of the runtime system is yet another design concern. Clam as a component

of PREMA is designed to be highly portable and interoperable with existing systems. The

primary interoperability problem we encountered is concerned with the MPI implementation

(here and throughout this thesis, the MPI implementation used in Clam and discussed in

the examples is LAM MPI [2]). There are two main reasons why MPI interoperability is

im portant:

• the functionality provided by MPI cannot and should not be duplicated in Clam;

• applications which already use M PI may require support from Clam too.

The first implementation of Clam was based on MPI point-to-point communication,

because of wide popularity and portability of MPI. The interoperability problems arise from

the fact, tha t in LAM M PI there is only one TCP communication channel which handles

interprocessor point-to-point communication. The MPI standard [3] suggests tha t MPI

implementation may use multiple channels. However, no efficient publicly available stable

M PI implementation exist which would have this feature. Myrinet and out-of-band UDP

LAM M PI implementations do not have single channel limitation [1], but Myrinet is not

CH APTER 2. RU NTIM E SY ST E M 10

procO procl

Cannot be received!

M PLSend(...) MPI.Reduce (...)

buffers full!

buffered
M PLSend(...)

bufferedrsrN (...)
M PI.Send(...)

rsrN (...)

F ig u re 2.1: Potential deadlock induced by buffering.

widely available, and out-of-band UDP is very slow and designed primarily for debugging

purposes. The lack for multi-channel TCP support within MPI can lead to problems with

buffering in a runtime library which uses MPI for communication.

Figure 2.1 depicts one of the possible deadlock scenarios in a runtime system which

uses MPI for communication. procO issues a series of one-sided communication operations,

which eventually result in M P ISends. p roc l, however, does not issue poll operation, and

the posted sends are buffered by MPI or by the operating system. The MPI collective

operation, MPI-Reduce, invoked later requires communication over the TCP connection

which was used previously by MPI-Sends. The buffer space available in LAM MPI may

not suffice at th a t point to buffer all pending sends initiated by the runtime system and re

ceive MPI.Reduce send. Hence, communication required by MPI.Reduce cannot complete.

The communication channels can be freed only after matching receives are posted for the

buffered sends. This can be done only during polling, since we consider single-threaded

implementation.

CH APTER 2. RU NTIM E SY ST E M 11

The Clam design addresses the issue of interoperability in two ways. First, the Clam API

includes functionality, which allows application to determine the completion of all pending

communication. Second, the design is taking into account the communication layer porta

bility. We define the Abstract Communication Interface (ACI) as a component of Clam.

ACI is the only part of Clam which interacts directly with OS-provided communication

primitives (MPI, TC P etc). The ACI API provides a small set of operations to enable post

ing of communication requests. It is sufficient to re-implement ACI in order to port Clam on

a new communication substrate. Any implementation of the ACI which does not use MPI

performs all communication via non-MPI communication channels, and thus eliminates the

possibility of the previously described buffering problem.

2.3 Im plem entation

The architecture of Clam is presented in figure 2.2. Clam is implemented as a set of modules.

Some of the architecture components are tightly incorporated within the system. Other

components are interfaced through a set of functions so th a t they can be easily substituted.

Clam is implemented in C. This decision has been made for better portability and to

achieve better performance. C + + lacks portability because of differences in implementation

of the language and STL across different vendors and platforms. It is also quite problematic

to use a runtime system w ritten in C + + with applications implemented in C. Clam data

structures (list and hashtable) are based on implementations from Linux kernel [18]. These

data structures are used by ACI implementation and in the main module of Clam.

The memory manager is another shared component of the system. It allows for strict

C H APTER 2. RU NTIM E SY ST E M 12

Clam API

ACI API

ACI

UDP

TCP

MPI

Data structs Memory mgmt

Location mgmt

Req post/process

User handlers <l'

Handler operatior

MO operations

Msg processing

F ig u re 2.2: The architecture of Clam.

checking of memory operations in the debug mode and enables caching of frequently used

data structures (greatly simplified version of slab caching [17]). Uncoordinated memory

management complicates debugging vand does not improve performance. Clam memory

manager significantly simplifies the process of development and gives slight performance

gains, which are to be evaluated later.

The communication-dependent part of Clam is hidden within the ACI implementation.

Again, this addresses the issue of Clam portability. The ACI API can be implemented with

virtually any subsystem which provides point-to-point communication primitives. All com

CH APTER 2. RU N TIM E SY ST E M 13

munication operations result in posting asynchronous communication requests to the ACI.

The communication is initiated by passing processor ID, communication buffer, and request

status object to the ACL W hen the requested communication operation is complete, the

status object is updated to reflect the completion. The two available tested implementations

of ACI are based on MPI and TCP. In the current implementation, TCP ACI module is

still using MPI for startup, processor ranking, and internal TCP channel setup. These pro

cedures can be implemented without MPI. This has not been done in Clam mostly because

of the convenient startup and termination functionality provided by LAM MPI.

There are additional benefits from having clear separation of communication-specific

part of Clam. Some of the applications from the targeted domain communicate large

amounts of small messages. Such applications can possibly achieve better network uti

lization communicating through UDP instead of TCP. W ith the separation of ACI, such

implementation has become possible. However, the complexity of UDP ACI implementa

tion is much more sophisticated than TCP ACL Also, experience of developers in the area

shows, tha t very slight performance improvements of communication over UDP are not

justified by the implementation complexity [6, 7]. The implementation of UDP ACI is left

as future work.

The functions of the main Clam module provide support for:

• handler registration: mechanisms for address-independent cross-processor handler in

vocation;

• mobile object operations: functions for creation, migration and processing of messages

for mobile objects, FIFO ordering of messages;

CH APTER 2. RU NTIM E S Y S T E M 14

• synchronization: guarantees tha t only one thread is inside Clam at a time, and pro

vides mobile object lock during execution of a handler directed to tha t object (while

locked mobile object cannot migrate);

• A C I request management: maintains queues of incomplete ACI requests and processes

completed requests.

The mobile pointer functionality has been discussed earlier. Such functionality requires

support for transparent location-independent message handler invocation. A specific module

of Clam, the Location Management Module, is performing this function. The location man

agement module implements a Location Management Policy (LMP), an algorithm, which

provides location-independent message routing. Location management is the central point

of research for the second part of this thesis. It was very im portant to make this module

highly “pluggable” . The location management module is interfacing Clam through the set

of functions and can be easily swapped (this idea is similar to the way specific filesystem

is implemented within the Linux kernel VFS [18], but in the current Clam implementation

the location management module cannot be changed at runtime).

2.4 R elated Work

Clam has been designed and implemented to serve as a new communication layer for the

PREM A framework. In this section, the previously used implementation of the communi

cation substrate within PREM A is discussed. For the comprehensive survey of related work

in the context of other runtime systems the reader is referred to [13].

C H APTER 2. RU NTIM E SY ST E M 15

Explicit Load Balancing
Application Code

Implicit Load Balancing
Library

Mobile Object Layer (MOL)

Data Movement and Control Substrate
(DMCS)

Adaptive Application

Low-Level Communication Substrate
e.g. MPI or LAPI

Operating System

F ig u re 2.3: The initial architecture of PREMA.

The PREMA programming model employs SPMD approach, similar to conventional

MPI-1 [3] applications. The initial architecture of PREMA is shown in figure 2.3. The

framework included three layers. The D ata Movement and Control Substrate (DMCS) was

interfacing the low-level communication primitives (MPI or LAPI) and provided one-sided

communication and RSR functionality. DMCS is described in detail in [15]. The Mobile

Object Layer (MOL) [22] was implemented on top of the DMCS API. MOL provided global

address space for the mobile object abstraction (object mobility was previously implemented

in Smalltalk [16] and Emerald [31]). Mobile object functionality serves as the basis for the

Implicit Load Balancing Library (ILB), which uses mobile object abstraction to implement

schedulable objects (SO). A SO is the smallest unit of granularity managed by the ILB.

Balancing workload among the processors is done by associating SOs with the workload

units and migrating them among the processors.

It has been shown, tha t the functionality provided by PREMA helps in achieving good

application performance [12]. It is also the case tha t application development is greatly

simplified when PREMA is used. However, we discovered a number of problems in the

CH APTER 2. RU N TIM E SY ST E M 16

initial design and implementation of PREMA. Most of the problems were identified from

our experience with applications, using the framework depicted in figure 2.3.

W ith Clam we addressed the problems discovered within the DMCS/MOL implemen

tation:

• lack of true interoperability with MPI (Clam: communication quiescence procedure

added, TCP-based implementation available);

• complicated and overloaded API (Clam: API reduced about two times, duplication

of DMCS functionality within MOL eliminated, simplified semantics of the API);

• “separation of concerns” between DMCS and MOL (Clam: monolithic design);

• use of C + + reduces portability and interoperability with applications (Clam: imple

mented in C);

• poor portability due to tight dependency on M PI (Clam: clear separation of commu

nication module; implementations based both on TCP and MPI are available).

Clam has become a new communication layer of the PREMA framework. The ILB

module and existing applications, which use it, have been ported on Clam in three days.

This fact supports the for high ease-of-use and stability of Clam. Performance results

presented in section 4.2 show, tha t Clam has a number of advantages over the DMCS/MOL

implementation.

CH APTER 2. RU NTIM E SY S T E M 17

2.5 Discussion and Future Work

Despite the obvious benefits of the Clam design and implementation, it cannot be considered

the last step in the evolution of the communication subsystem of PREMA. A number of

outstanding issues still have to be studied. First, experimental data show, tha t for some

application configurations, Clam adds higher overhead compared to DMCS/MOL (about

10% more). It is the case, th a t DMCS communication uses blocking M PLSend calls for

communication. For small messages (less than 64Kb) blocking communication achieves the

best performance [1]. However, it is known th a t blocking on communication can lead to a

deadlock [48]. It remains to be seen whether this difference in communication mechanisms

is the cause of the observed overhead. A thorough profiling has to be completed.

Current Clam implementation does not use additional threads for communication pur

poses. Advantages of adding such threads to the implementation have to be considered.

The experience with the ILB showed, tha t it is absolutely necessary for load-balancer to

be able to receive load-balancing utility messages independently and concurrently with the

application execution [12]. In DMCS/MOL, and currently within Clam, this is achieved by

synchronizing the runtime system and performing periodic poll in a separate load-balancer

thread. Load-balancing messages are distinguished from the application messages using

tags. However, this turned out to be an unsatisfactory solution for applications which

generate high network traffic. Congestion of the single processor-to-processor communica

tion channel leads to late arrival of load-balancer messages and thus poor load-balancing

decisions. In future, we plan to address this issue by providing an API for creation of addi

tional communication networks (not possible in MPI ACI, but feasible in TCP). This will

C H APTER 2. RU N TIM E SY ST E M 18

eliminate the channel congestion problem and the existing requirement for message tags.

Garbage collection of destroyed and unused mobile pointers has not been addressed in

the current implementation. The reason for this is tha t the implementation of distributed

garbage collection would add a lot to the complexity of the code and to the runtime over

heads (most of the distributed garbage collection algorithms require additional communica

tion [41]). For the existing AMR applications which use PREMA, there is no requirement

for dynamic object destruction. Distributed garbage collection in Clam is left as a future

work.

Finally, Clam is an open-source project. We plan to prepare release of the source code

and make this runtime system available to the community in the near future.

Chapter 3

Location M anagem ent Policies

The problem of location management (LM) is relevant in parallel and distributed systems,

where objects dynamically relocate. Techniques for managing location, i.e., Location Man

agement Policies (LMP), describe the rules which are used to find objects and the actions

to be taken when objects migrate to the new locations in the network.

A LMP should provide efficient implementations for move and find operations on ob

jects. Efficiency in the context of LMP is defined in term s of (1) communication, (2)

computation overheads, and (3) response time. However, for the same LMP, it is possible

th a t optimizations of one operation will deteriorate the performance of another and vise

versa. This is illustrated by the following two extreme strategies, described in [11]. The

“full-information” strategy requires up-to-date information about all objects for efficient

find operations, but then the cost for performing move is high (all nodes have to be up

dated). On the other hand the “no-information” strategy does not require location updates.

Consequently, the find operation is very expensive, its cost is almost equivalent to a global

search.

In this thesis we evaluate the impact of location management policies on performance of

parallel and distributed applications tha t require object migration. Specifically, we evaluate

19

C H APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 20

a number of diverse location management policies within Clam, the runtime system pre

sented in Chapter 2. The LMPs we evaluate combine existing experience of location man

agement in Parallel Distributed Computations (PDC), mobile communication networks,

and mobile agents computing. This evaluation is the first (to the best of our knowledge)

comprehensive evaluation of LMPs in PDC. One of the objectives of this study is to classify

existing location management approaches in terms of their impact on the overall perfor

mance of parallel and distributed com putation applications.

In this chapter we first overview location management in parallel and distributed compu

tations, mobile communication networks, and mobile agents computing. We do not overview

location management in the areas, which have significant differences in the model or prob

lem statem ent compared to location management in Clam (e.g., Distributed Shared Memory

concerns with replication and consistency models [33]; in Peer-to-Peer systems assignment

of objects is almost static and the search procedure uses different assumptions [38]). Next

we describe location management in Clam, the design choices for LMP development, and

the policies we have implemented and evaluated.

3.1 Overview

3 .1 .1 P a ra lle l D is tr ib u te d C o m p u ta tio n s

We study location management in the context of the runtime system described in the

previous chapter. The Clam mobile object model assumes tha t mobile objects represent

user-defined objects, which correspond to user data. These mobile objects are distributed

among the processors by the ILB library to balance the processors’ workload. The task for

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 21

Clam is to provide efficient routing of messages sent to mobile objects.

Our survey of the related work on location management within those runtime systems

th a t provide support for object mobility showed, tha t most of such systems use the same

LM technique. The forwarding addresses technique was first used in DEM OS/M P operating

systems in the context of process migration [42]. Later it was extended and evaluated by

Fowler in [27]. In forwarding technique each time an object migrates, it leaves a pointer to

the new location. Messages sent to the object follow the trail of pointers to reach the object.

A number of modifications described later in this chapter allow to keep the forwarding chain

short.

Following are some of the systems, which employ forwarding technique for location man

agement: Emerald [31] (object-oriented system with fine-grained object mobility support);

Thor [37] (implements object-oriented database management system); Amber [20] (pro

vides simplified model for multiprocessor applications). SSP chains [44] (distributed tech

nique for garbage-collection), MOL [22] (mobile object functionality for load-balancing),

C harm ++ [36] (framework for dynamic load-balancing).

Another technique for mobile object location management is the centralized directory. It

is used in A B C ++ which extends object-oriented features of C + + and provides object mi

gration support using centralized location database [10]. Few other systems use uncommon

methods for location management. These systems are usually developed for specific appli

cations and and hence are not universal. For example the arrow protocol implemented in

the Aleph toolkit [28] supports exclusive access to objects using directory based on spanning

tree.

Following are our assumptions about the PDC model relevant to the development and

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 22

evaluation of the LMPs within this thesis:

• number of nodes involved in the computation is in the order of hundred;

• overdecomposition of the problem: number of objects is in the order of thousand;

• fixed resource allocation; resources are non-faulty;

• all-to-all overlay network;

• possible geographical distribution of the computational resources (network partition

ing);

• object migration and communication patterns are unpredictable in the general case.

3 .1 .2 M o b ile C o m m u n ic a tio n N etw o r k s

During the last years we have been observing constant development of wireless and cellular

communication technologies. Different kinds of Public Land Mobile Networks are becoming

more and more ubiquitous. Cellular phones, palm-top computers, laptops with wireless

network cards, i.e., mobile terminals (MT), are not attached to a single stable physical

location, but roam around. This creates the need for special techniques to handle such

movement in order to guarantee communication between MTs. In this section we describe

standard location management procedures in cellular communication networks and survey

some of the proposed modifications.

Typical structure of a network infrastructure supporting cellular wireless communication

is depicted on figure 3.1. The geographical area is divided into location areas (LA) [8].

Each LA can contain one or more cells. A mobile support station (MSS) is assigned to

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 23

HLRl

STR

STPSTR

MSCMSCLR
MSC Cell

LA
.L A

LA _
MSS

F ig u re 3.1: Example architecture of a mobile communication network.

every cell to handle all network traffic directed from a M T located within the cell. Up in

the hierarchy a mobile switching center (MSC) governs one or more LAs and maintains a

database with MTs locations. Multiple MSCs are connected together by a fixed backbone

and/or intelligent network through a number of signal transfer points (STPs).

In cellular networks mobile users are tracked using two-tier scheme [8,40] (as defined

in IS-41 [25] and GSM [26] standards). A location database, called Home Location Register

(HLR), is predefined for each MT. Another database, a visitor location register (VLR),

is associated with one or more LAs (see figure 3.1). Two procedures, governed by the

standard, define what happens when MT moves from one LA to a different one, and how

a call recipient can be found. Following is the brief description of location procedures as

implemented in the current mobile networks.

There are two possible scenarios when a MT moves from one coverage area to another.

If the new area shares the local database (VLR) with the original one, tha t VLR is simply

updated with the new location of a user. If VLRs are different, home registry has to be

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 24

updated with the user’s new location. The MT requests to remove its record from the old

VLR and registers with the new one.

If there is a need to locate a particular MT when another MT makes a call from some

cell, the request is first sent to the local VLR of the caller. No further actions are required

if tha t VLR possesses information about the recipient’s location. Otherwise, a query is

propagated to the callee’s HLR. The up-to-date location information (which HLR always

has) is sent back to the caller’s support station. The support station covers the whole

location area consisting of multiple cells. The actual cell where the recipient is located is

determined by polling, or paging, within the LA. The search request is broadcast to all cells

of the LA, and the recipient reports its location cell upon receiving this request. At that

point connection between the two MTs is finally established.

Most of the research about location management in Mobile Communication Networks

has been concerned with the costs of updating the HLR. Some studies were trying to

keep and improve the centralized nature of the scheme, while others were attem pting to

distribute the process of location. Interestingly enough, all of the described techniques are

just proposals. They have been evaluated using theoretical analysis, simulations and traces,

but none is a part of the existing standards.

The nature of mobile network communication is usually unpredictable, but the infras

tructure should support any particular pattern [49]. Schemes th a t can adapt to the com

munication and migration characteristics of MTs are advantageous. In [30] Jain proposes

to keep a cache at each VLR. When a home database is queried for a specific MT, the

response is stored locally, so th a t the subsequent call to the same MT may not require

communication with the HLR. It has been shown, tha t if CMR is high, caching performs

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 25

very well.

Another proposed improvement is based on user profile replication. A profile represents

the set of mobile users, whose location information is always kept up-to-date at the local

VLR. This enables quick location of the most “popular” users. Different approaches to

profile replication are discussed in [43,46].

Forwarding technique eliminates the update operation by keeping a pointer to the new

location of a migrated MT at the source LA VLR [29]. When a request to locate tha t MT

arrives, it will be forwarded to tha t new location. Forwarding techniques decrease the load

on HLR, but have high overheads if forwarding chains become long. The study described

in [29] shows, th a t if Call-to-Mobility Ratio (CMR, the number of calls issued to the user

over the number of times it changes location) is lower than 0.5 and forwarding chains are

at most 5 hops long, forwarding reduces user location costs network overheads by 20-60%.

A conceptually different approach uses distributed database architecture [8] instead of

a centralized HLR. This technique takes advantage of the fact, tha t in most cases back

bone/intelligent network architecture has hierarchical tree structure. This allows to dis

tribute the load of location management among the non-leaf nodes of the tree. Different

hierarchical approaches are described in [34,40].

Partitioning of the coverage area into zones, among which MT moves infrequently,

is yet another modification which reduces the number of LSs and query time for certain

call/m igration patterns. A partition consists of location areas, which are represented by the

dedicated location server. T hat representative LS is not aware of the exact MT location,

but knows its current partition. This technique reduces update-induced communication.

Summarizing, hierarchical location schemes eliminate the need for centralized HLR at

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 26

the cost of increased general complexity of location management and increased storage

requirements at the intermediate LSs. Hierarchical techniques support locality of commu

nication and migration of MTs.

Compared with LM in PDC, mobile network systems have a number of distinct proper

ties. In PDC a local location directory is associated with each processor. This directory is

analogous to VLR in combination with supporting stations, which communicate with MTs

local to a location area. However, in PDC location directory is always aware of all the

objects local to the process address space. This eliminates requirement for paging. In PDC

applications, similarly to MNC, communication and migration patterns are not predictable

in general case. At the same time, in MNC the migration options for a MT are limited by

neighboring areas, while in PDC object can migrate to any of the processors regardless of

their geographical location. Of course, PDC application do not include unpredictability of

human character, present in cellular phone networks. Another difference of PDC is the time

required for a mobile object to change its location. In MNC there are strict limitations on

maximum travel speed for cellular phone users; the sizes of communication cells are also

predefined [39]. PDC applications can possibly move hundreds of objects in few seconds

between geographically distant locations.

There are also differences in the system architecture. Mobile networks in most cases

have hierarchical structure. There can be dedicated location servers on non-leaf nodes of

the hierarchy. In PDC applications computation is done either on a COW, or a collection

of clusters. All nodes have equal functions, and the application can rarely take advantage

of the underlying network routing, as it is handled by the low-level protocols.

The PDC model assumes fine-grained object mobility. The number of objects may be

C H APTER 3. LOCATIO N M A N A G E M E N T POLICIES 27

large. We argue though, tha t the number of objects in mobile communication networks,

e.g., in cellular networks, is generally much higher (hundreds of millions). This puts certain

size and memory limitations on MNC LM algorithms.

3 .1 .3 M o b ile A g e n ts C o m p u tin g

Mobile agent computing is a relatively new area of distributed computing, which is gaining

more popularity with the development and growth of the Internet. Mobile agent (MA) is

an independent piece of code and data. It can be taken from the execution context on one

host, migrated to a different machine, and continue execution there after migration com

pletes. Recent progress in developing platform-independent environments (e.g., Java Virtual

Machine) addressed many technical difficulties, inherent to the implementation of mobile

agents, which also contributed to the growing popularity of the model. The spectrum of

applications, which can take advantage of mobile agents, includes e-commerce, distributed

collaboration environments, information search and dissemination, network management

and monitoring [35]. Some of the MA applications require support for communication be

tween the agents [19]. In such cases location management techniques play very im portant

role [49]. Nevertheless, being im portant, location management is not the major research is

sue in mobile agent computing: the main challenges in MA systems are support for mobility,

security, naming services and fault-tolerance [32].

Home server location algorithm associates a specific host with each mobile agent. Every

time a mobile agent changes its location, home server is updated with the new location.

A message addressed to the mobile agent is sent to its home server, which forwards tha t

message to the agent. A janta [47] implements two-tier home-based location management

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 28

scheme, similar to the one used in cellular communication. A number of modifications of

the centralized scheme exist [49]. For example, the server can be queried for the current

location of the destination agent. The answer to the query can then be used to send the

message directly. This scheme is called query server. It is also possible to have a single

dedicated host, central forwarding server, to keep location information about all agents.

The disadvantages of the centralized scheme are high load on the database host and its

network links, possibly high storage requirements, single point of failure, poor scalability.

Nevertheless, it gives good average for the number of hops a message has to travel to reach

the object. In applications with the small number of agents or low communication rate this

approach can be beneficial.

The forwarding technique can also be used for locating mobile agents. Voyager plat

form [5] uses forwarding pointers in combination with home server for agent location. Prob

lems with forwarding pointers include possibly long chains of forwarders and low resistance

to failure.

Home-server and forwarding are the most popular location management methods in

mobile agent computing. Alouf et al [9] compared these two schemes. Markovian analysis

and experimental results show tha t centralized server performs better than forwarders on a

LAN, but not on a wide-area network. O ther approaches to locating agents in MA systems

include broadcast and hierarchy of the location servers.

Cao et al summarize experience with mobile agents location management by introducing

the concept of mailbox in [19]. The authors generalize most of the existing approaches and

introduce new classes of location protocols. A mailbox which buffers incoming messages is

associated with each mobile agent. The mailbox serves as a mediator in communication

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 29

y, Migration frequency

< > PS (Push)

< > PL (Pull)

JM (Jump) x, Delivery

NS (No) NM (No) FM (Full)

z, Synchronization

F ig u re 3.2: Design space for MA communication protocols (Cao et al, [19]).

with the mobile agent. Logically, the mailbox is a part of the mobile agent, but it can be

detached from the agent. Therefore, it is not required th a t the agent and its mailbox are

located on the same host. Using this idea, classification of the inter-agent communication

algorithms is done along the three dimensions, as shown in figure 3.2.

Dimension x defines the frequency of mailbox migration. Decisions about migrating

the mailbox are made dynamically with Jum p Migration, and with Full Migration mailbox

always migrates together with the agent. Axis y determines the agent-mailbox interaction.

Either mailbox is responsible for forwarding incoming messages to the agent (push), or

the agent periodically queries its mailbox for available “mail” (pull). Finally, dimension z

identifies options in synchronization in order to achieve better communication reliability.

If synchronization takes place, the moving object (mobile agent or mailbox) synchronizes

with the stationary object (mailbox or host) to prevent message loss during the process of

migration. Synchronization can be partial (host with migrating mailbox (SHM) or migrating

agent with its mailbox (SMA)) or full (combination of SHM and SMA).

Combinations of the classification param eters creates a variety of protocols. In such a

C H APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 30

taxonomy each protocol is defined by the string of format X X -Y Y -Z Z with its components

chosen from each of the axes. A particular algorithm should be chosen according to the

requirements of an application. N M -P S-* class of protocols corresponds to the home-based

technique. Essentially, stationary mailbox represents forwarding server. JM -*-* and FM -

- generalize forwarding pointer protocols with and without forwarding chain shortcutting

respectively.

Mobile agents application model has certain properties, which make it quite different

from mobile network communication model and from PDC. For certain applications, mi

gration and communication patterns of a mobile agent can be known in advance [49]. This

almost never holds for mobile networks. Mobile agents are usually designed to operate on

a wide area network, most likely, on the Internet. Such environments consist of millions

of possible locations for an agent. Moreover, mobile agents applications are much more

dynamic than, for example, cellular phone networks. The number of mobile agents for an

application may vary and change during its runtime. Hundreds of agents can possibly be

created and destroyed in seconds. Mobile agents do not operate on a fixed predefined set of

hosts. The number of locations mobile agents operating on the Internet can visit is bounded

only by the number of on-line hosts supporting the platform of the mobile agent.

One more im portant difference of PDC model is in the assumptions about communi

cation. The reliability of communication provided to an application in PDC is usually

implemented by the lower levels of the system. One-sided communication abstraction pro

vided by Clam is reliable. Messages sent to mobile objects are also guaranteed to arrive in

FIFO order. The MA communication may not be reliable. This is why synchronization is

considered as a part of MA location management.

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 31

3.2 Location M anagem ent in Clam

A Location Management Policy (LMP) in Clam defines rules for performing three opera

tions: update, search, and search-update. The update operation takes place when an object

migrates from one processor to another. The search operation specifies how a message to

a non-local mobile object can be delivered. The search-update defines the procedure of

updating location information of selected processors after the message was delivered to an

object.

The location directory is a distributed data structure managed by a LMP. It maps an

object onto the possible or exact location of tha t object. Some techniques may use a set

of possible locations [40], but they are outside the scope of this thesis. Such approaches

can be beneficial in applications where object migration is localized within group of nodes.

This is not the case in general for load-balancing. The development of customized LMPs

for a specific load-balancing algorithm has not been addressed in this work.

The location management design space is shown in figure 3.3. Each axis represents a

LMP operation and the corresponding options arranged in the order of increasing complex

ity. Migration of an object to a new location may result in one of the four possible update

scenarios:

• no update (no communication);

• update of the local directory (no communication);

• update of location directories at selected sites;

• update of directories at all processors (broadcast).

C H APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 32

u p d a te

full update

selective update

local update

no update

sea rch -u p d a te
random

no update selective update full update
local guess

predefined

location

broadcast

search

F ig u re 3.3: Design space for location management policies development.

It is not feasible to maintain exact location of an object at all processor directories.

This would require global synchronization of the system before each object migration. We

do not consider this as a possible solution because of high overheads. That is why the

location information stored at a local directory can often be outdated, regardless of the

update technique used. Therefore, the local directory information is nothing more than a

location guess which was correct at some point in the past. A message directed to an object

results in a point-to-point message sent to a processor, where th a t object can possibly reside.

If the guess was wrong, tha t message will trigger another point-to-point message, i.e., the

message will be forwarded. Thus, the search operation is essentially a process of routing

the message toward the processor where the searched object is located. We distinguish four

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 33

general options for implementing the search operation. They differ by the choice of the

recipient (s) for the initial search message:

• the recipient is chosen randomly;

• the recipient is chosen using the guess from the local directory;

• the message is sent to a predefined processor;

• the message is sent to all of the processors (broadcast).

All of the search methods can also send queries to the corresponding locations instead

of sending actual messages. This could decrease forwarding traffic in some applications,

but the pending outgoing messages would have to be queued on the source processor until

the reply arrives. However, when the reply does arrive, it may already be outdated, i.e.,

querying decreases forwarding overheads at the cost of increasing the likelihood of location

information being invalid. Query-based search strategies are not evaluated in this study.

Querying is likely to perform badly for applications with intensive communication and

object migration while introducing significant complications into the implementation of the

LMP.

Search-update is an optional procedure in a LMP. Its purpose is to reduce the length

of the forwarding pointers chain. If search-update procedure is present in a LMP, it can

update either some of the processors in the system or update all of the processors. The idea

behind the search-update operation is similar to caching in cellular networks. It is based on

the assumption, tha t if a message was sent to an object, it is likely another message will be

sent to it again. Search-update attem pts to reduce the cost of subsequent object searches.

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 34

In PDC the cost of subsequent messages to an object would be reduced if those message

travel shorter path than the previously sent messages to the same object from the same

processor. This improvement is achieved by updating the location directory of the initia

tor processor with the newer object location guess. The update procedure will result in

shortening of the forwarding pointers chain. The difference from cellular networks is tha t in

distributed computing it is possible to have a directory entry for each object in the system

(unlimited cache). In MNC model this may not be feasible because of the large number

of MTs. Different search-update strategies have been presented and evaluated in [27] by

Fowler.

A location management policy implemented within Clam should:

• minimize the length of the path for forwarded messages;

• minimize additional communication;

• balance location management “duties” among the processors;

• minimize computation overheads of the LMP operations.

Different LMPs pursue different trade-offs of the listed requirements. As it is shown

later in this thesis, the application performance may heavily depend on the choice of LMP

based on the application properties (intensity of the object communication and migration,

in particular).

Seven location management policies have been implemented within Clam for the pur

poses of this evaluation. The selection of policies was affected by a number of factors. First,

the policies which are commonly used in PDC had to be evaluated. Second, the selected

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES 35

LMP Update Search Search-update
Lazy Forwarding (LF) no local guess no
Jump Update (JU) no local guess yes, selective
Path Compression (PC) no local guess yes, selective
Broadcast Update (BU) yes, all local guess no
Partition Update (PU) yes, selective local guess no
Eager Update (EU) yes, selective local guess no
Home-Based (HB) yes, selective home processor of

the object
no

F ig u re 3.4: Summary of the implemented location management policies.

policies should be appropriate within the PDC model. Third, we attem pted to use some

of the ideas collected from surveying location management methods in the relevant areas.

Following is the description of the implemented LMPs, which is also summarized in table 3.4

with respect to previously discussed LMP operations.

It is im portant to note, tha t each mobile pointer in Clam contains a processor ID where

th a t pointer was originally created. In the absence of any information about the mobile

pointer in the directory of a processor, the origin processor of a mobile pointer is used as

the best location guess.

Lazy Forwarding (LF) is the simplest forwarding protocol. Messages to objects are

routed following forwarding pointer addresses stored in the local directory. When an object

moves, only the local directory is updated. Forwarding has low migration cost. The main

disadvantage of LF LMP is tha t the length of forwarding chain is bounded by the number

of processors only.

Jum p U p d ate (JU) is similar to LF, but when a message reaches the object, an

update message is sent back to the processor from where the message is originated. This

is similar to caching in mobile networks. The cost of subsequent message to the object is

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 36

reduced by at least one hop.

P ath C om pression (P C) differs from JU tha t the update message is propagated to

all processor in the forwarding pointers trail.

B roadcast U pd ate (B U): the new location of an object is broadcast each time the

object migrates. Search proceeds the same way as in LF, by forwarding.

P artitioned U p d ate (P U): differs from BU by updating only selected locations when

an object moves. The idea of partition-based location management originates from MNC,

although we implemented a different algorithm not based on tree hierarchy. The motivation

behind this protocol is to address the issue of slow network links. We assume the partitioning

of nodes in sub-clusters. Nodes within a sub-cluster are connected with high capacity

links, while inter-subcluster connections are slow. When an object moves, a new location

is broadcast to all the nodes within the sub-cluster. If the new location node is in a

different sub-cluster, the object location is broadcast within tha t sub-cluster upon object

arrival. Search procedure is done using forwarding. PU LMP attem pts to minimize update

traffic over the slow connection. Search-update updates the source processor with the new

location, if the message was forwarded. The update is broadcast within the partition of

th a t processor/

Eager U p d ate (EU) uses the idea of profile replication, briefly described in Sec

tion 3.1.2. Each time a message arrives to the object, the sender processor is added to the

profile of tha t object. This profile accumulates information about processors “interested”

in communication with the object. W hen an object migrates, all of the processors from the

list are updated with the new location, and the list is reset. Updates in EU LMP are more

“intelligent” than in BU LMP.

CH APTER 3. LO C ATIO N M A N A G E M E N T POLICIES 37

H o m e-B ased (H B): each mobile pointer in Clam contains an ID of the processor

where tha t pointer was created. We call this processor “home” of the mobile object. When

a message is issued to an object and the object is not local, the message will be sent to the

“home” node. The directory of the “home” node is updated with the new object location

after every migration, so tha t it can route incoming messages to the object.

Figures 3.5-3.10 illustrate how the selected LMPs manage the distributed location di

rectory. We consider the system consisting of five processors and one mobile object. We

assume tha t the object has been created on processor 0. Solid arrows show the location

information on each of the processors for th a t object. The figures depict snapshots of di

rectories after each of the actions in the sequence: (1) object moves from 0 to 1; (2) object

moves from 1 to 2; (3) processor 4 sends a message to the object; (4) object moves from

2 to 3. In these examples we do not take into account concurrency: all messaging activity

from the previous step is completed before proceeding to the next step.

JU LMP is the most common technique for location management in PDC run-time

systems listed in Section 3.1.1. HB LMP is also used in some of the implementations.

Complexity of LF, JU and PC LMPs was studied in [27]. To the best of our knowledge,

there is no mobile object run-time environment which would provide a choice of LMP to the

application. We are also not aware of any work which would evaluate and compare these

LMPs.

CH APTER 3. LO C ATIO N M AN A G EM E N T POLICIES

F ig u r e 3.5: Lazy Forwarding LMP.

F ig u re 3.6: Jump Update LMP.

F ig u re 3.7: Path Compression LMP.

F ig u r e 3.8: Broadcast Update LMP.

F ig u r e 3.9: Home-Based LMP.

F ig u r e 3.10: Eager Update LMP.

Chapter 4

Evaluation

This chapter is structured as follows. First we evaluate the performance of Clam in terms

of absolute overheads it introduces and how it compares with the previous implementation

of PREM A communication layer. The second part of the evaluation describes the series of

tests which compare the performance of the selected LMPs with respect to their impact on

the performance of the two benchmarks we describe in this chapter. We conclude with the

analysis of the collected performance data.

4.1 Experim ental Environm ent

4 .1 .1 H ard w are P la tfo r m s

The prim ary testing environment we used in our experiments was SciClone Cluster of The

College of William and Mary [4]1. The architecture of SciClone is heterogeneous. It fea

tures different types of processor configurations and various networks (Fast Ethernet, Gi

gabit Ethernet, Myrinet). The detailed description of SciClone can be found in [4]. Most

1 Computational facilities of SciClone Cluster were enabled by grants from Sun Microsystems, the National
Science Foundation, and Virginia’s Commonwealth Technology Research Fund.

39

CH APTER 4. EVALU ATIO N 40

lrl
router

Fast Eth
s3 switch

Gigabit Eth
s2 switch

Gigabit Eth
s i switch

ty O l- ty ll ty l2 -ty22 ty23-ty32

F ig u re 4.1: Simplified configuration of the CS Network Testbed.

of the SciClone nodes support more than one network interface. In our experiments all

communication was done via Fast Ethernet interconnect.

The Computer Science Network Testbed2 is a subsystem of switches connecting 32

lower nodes of SciClone Typhoon subcluster through a separate network interface. The

testbed has been designed for experiments with various network parameters. WAN can be

simulated by adjusting hardware settings on the network switches and changing parameters

of the routing software. The simplified architecture of the testbed is depicted in figure 4.1.

We simulated wide-area network environment by locking bandwidth of the s i- lr l and s2-

Irl (see figure 4.1) links to 10 Mbps on the s i and s2 switches and keeping 100 Mbps

bandwidth for the communication between nodes connected to the same switch (hereon we

call this configuration 10/100 configuration).

2The Network Testbed is designed and maintained by the group of Dr. Bruce Lowekamp at the College
of William and Mary.

CH APTER 4. EVALU ATIO N 41

10
11
12

13

14

15

16

il

sO

si
s2

s3

s4

s5

s6

s7

F ig u r e 4.2: Sorting network for eight inputs.

4 .1 .2 B en ch m a rk s

4.1 .2 .1 Synthetic M icrobenchm ark

Parallel network sort benchmark, which we call netsort4 for historical reasons, implements

a sorting network3. Sorting network is a comparison network which specifies a sequence of

comparisons for its inputs to produce a sorted sequence. The details behind sorting networks

are discussed in detail in [23]. The process of sorting a sequence of eight numbers using

sorting network is illustrated in figure 4.2. Through a series of comparisons and exchanges,

the input sequence i transforms into the sorted sequence s. For input line iO this results

in comparison with lines 1, 3, 1, 7, 2 and 1. Each of the shaded regions corresponds to a

stage. All comparisons within the stage can be done concurrently. A sorting network of

such structure can sort an input sequence of n numbers in 0 (lg 2n) time [23]. In the rest

of this section we concentrate on the details of the netsort implementation.

It is im portant to note, tha t netsort4 benchmark has been developed with the purpose

The netsort4 benchmark was originally implemented by Chris Hawblitzel.

C H APTER 4. EVALUATIO N 42

typedef struct sortnode_t {
int id;
int stage;
int value[DEPTH+1] ;
mobile_ptr_t partner[DEPTH];
int partner_value[DEPTH+1];
int partner_ready[DEPTH+1];
int partner.id[DEPTH] ;

} sortnode.t;
F ig u re 4.3: netsort sortnode structure.

of simulating communication intensive tightly-coupled application. The benchmark was not

designed to achieve high performance and speedups of sorting.

Description of the netsortJf. benchmark follows. A sortnode is created for each element

of the input sequence of size n. Sortnode is described by struct presented in figure 4.3.

A Clam mobile pointer is created for each sortnode. During the setup procedure, sortn-

odes are created and initialized. Sortnodes are assigned ids from 0 to n, which do not

change throughout the execution. The stage field is initialized to 0, and corresponds to

the current stage of the algorithm for th a t sortnode. DEPTH is defined as the maximum

stage for a problem instance. The value array contains values assigned to a sortnode on

each of the stages. Initially the value [0] field is assigned an input sequence element. The

array of Clam mobile pointers partner describes comparison sortnodes at each stage. The

partner.value contains values of partner sortnodes, and the non-zero value of the zth el

ement in partner.ready tells tha t the zth partner sortnode has reached the stage i. The

partner.id keeps the id of the zth partner sortnode.

The benchmark is initiated by sending a start message to each of the sortnodes from

processor 0. All other processors except 0 are polling for incoming messages until the

CH APTER 4. EVALU ATIO N 43

finish-handier signals completion. Upon the arrival of start message a sortnode sends

receive-value message to its partner sortnode on the first stage. That message includes the

stage of the sortnode and its value at tha t stage. The receive-value handler checks whether

the recipient sortnode reached the same stage as the stage specified in the message. If it

did, the current sortnode value is compared with the value included in the message and is

modified if necessary to min or max of the two depending on the id of the current partner,

i.e., if it is numerically greater or smaller than its own id . The s ta g e value is incremented,

and the sortnode sends receive-value message to the next partner as described above.

The receive-value messages can reach a sortnode out-of-order. If the receive-value mes

sage from the zth partner arrives before the message from the (i-1) th partner, the s ta g e

value included in the message is greater than the stage of the recipient sortnode. In this

case corresponding p a r tn e r_ v a l is assigned the sent value, and p a rtn e r_ read y is set to 1.

The receive-value handler will make comparisons for stages i and (i-1) when receivejualue

message from partner (i-1) arrives. The algorithm finishes when all sortnodes reach the

stage value of DEPTH.

A slightly modified version of the netsortf benchmark, netsort5 , works the same way

as netsort4 , but the creation of sortnodes, and thus mobile pointers, is evenly distributed

among the processors. It has been described in the previous chapter, tha t in Clam the

processor where a mobile pointer was created is designated as home of the mobile pointer.

In order to study the effects of LMPs, after the completion of each stage a sortnode is

migrated to a randomly assigned processor. The benchmark allows to increase access-to-

mobility ratio by changing the frequency of object migrations. Another parameter of the

benchmark is the message payload size.

C H APTER 4. EVALU ATIO N 44

Processor 0Processor 0

F ig u re 4.4: Example of inserting a boundary point in PCDT.

netsort is a tightly coupled and communication intensive benchmark. We believe, that

some of the applications from AMR domain have similar communication properties.

4.1 .2 .2 P C D T E nd-to-E nd A pplication

Parallel Constrained Delaunay Triangulation (PCDT) is a parallel mesh generation algo

rithm based on Delaunay triangulation [45]. The reader is referred to [21] for the detailed

description of the algorithm and for the definition of related terms.

The main difference of the PCD T algorithm from Delaunay triangulation is tha t the

point cavity cannot expand across the predefined boundary. At the preprocessing stage of

PCDT, the problem is divided into a number of subdomains satisfying certain boundary

properties. Each subdomain can then be triangulated almost independently on separate

processors. The process of subdomain triangulation consists of selecting and changing

“bad” triangles (i.e., those, which do not satisfy certain geometric requirements) from the

initial triangulation. The recalculation of the subdomain mesh can lead to modifications of

C H APTER 4. EVALU ATIO N 45

the edges located on the subdomain boundary. When a new point has to be inserted on the

boundary, a “split” message is sent to the neighboring subdomain located on some remote

processor. The described process is depicted in figure 4.44.

An implementation of PCDT decomposes the initial domain and distributes resulting

subdomains among the processors, which mesh the subdomains concurrently. We consider

PCD T as a part of the end-to-end iterative application, where the requirements for a par

ticular subdomain (and thus complexity of its processing) can dynamically change. In such

application, meshing is just one of the steps in the computation. The resulting mesh is

used by parallel Finite Element Methods (FEM) solvers. The subsequent mesh refinement

or coarsening depends on the error estimators in the case of parallel FEM solvers. Static

assignment of subdomains to processors would lead to unequal load, thus dynamic load-

balancing is required.

The end-to-end PCDT benchmark simulates a real end-to-end application. It approxi

mates the mesh generation phase of an adaptive FEM solver. The data collected from the

single-iteration PCD T application5 was used to estimate times for subdomain refinement,

number and size of “split”-initiated messages, and sizes of the subdomains before and after

refinement. The input parameters for the benchmark are number of iterations / , percentage

of subdomains to be refined or derefined on each iteration R , and the level of aggregation

of “split” messages A (aggregating multiple “split” points into a single message improves

network utilization). The number of subdomains is fixed to 512.

The ILB layer of PREMA provides dynamic load-balancing within the PCDT bench

4Figure 4.4 is a courtesy of Brian Holinka.
5We used single-iteration PCDT application developed by Andrey Chernikov.

CH APTER 4. EVALU ATIO N 46

mark. The complete coverage of the algorithms used in ILB and its implementation can be

found in [12-14]. We used work-stealing load-balancer for all the experiments.

R x 512 subdomains are chosen at each iteration of the benchmark. These subdomains

are refined or derefined (these operations are assumed to have similar complexity). The load-

balancer has to redistribute subdomains according to dynamically changing load. Other

subdomains are not involved in the refinement. The processed subdomains may however

result in “split” messages sent to neighboring subdomains. These are the mobile object

messages handled and routed by the Clam location management module.

4.2 Performance Evaluation of the Runtim e System

We conducted a series of tests both to compare Clam with the DMCS/MOL implementa

tion and to measure the absolute overheads. The first test measures maximum achieved

bandwidth over the 100 Mbps Fast Ethernet link using ping-pong method. In this test

Clam remote service request functionality is used to invoke remote function with the buffer

of variable size as an argument. The Clam-achieved bandwidth is measured for TC P and

M PI implementations of ACI. Similar test is done for DMCS, MOL and pure MPI. The

results for small and large message sizes are plotted in figure 4.5.

The results of the ping-pong test show, tha t in almost all cases Clam achieves better

bandwidth than DMCS and MOL. For small message sizes, LAM MPI performs best. In the

case of large messages, Clam implemented on top of TCP ACI gives the best performance.

This is happening mostly because for large messages LAM MPI is using three-way handshake

protocol. The performance gain of Clam over the similar MOL functionality is over 20%.

CH APTER 4. EVALU ATIO N 47

5000020000 30000 60000 70000
message size, bytes

i

message size, bytes

F ig u re 4.5: Maximum achieved bandwidth for small and large message sizes.

The poor performance of the MOL in this test is explained by the DMCS/MOL separation,

which requires an additional memory copy. Both MPI and TC P implementations of Clam

give better performance results than DMCS.

The second test was designed to compare the performance of the mobile message func

tionality of Clam vs MOL. In this test a single object is created on processor 0. This object

is first migrated to processor 1, and a mobile message is sent to th a t object from processor

0. When the message is received, a reply RSR is invoked on processor 0 from the processor

where the object is located. The latency measured in this test is defined as the time from

sending a message to receiving the reply. Next the object migrates to processor 2, and the

procedure is repeated. Lazy Forwarding location management policy is used, so when the

object is located on processor 2, each message sent to it from 0 traverses through processor

1 to 2. The results of the test are presented in figure 4.6.

The mobile object message latency test demonstrates tha t (1) Clam has better overall

performance, and (2) the per-hop overhead is about constant when Clam is used while it is

increasing for MOL.

The last two performance tests evaluate the overall effectiveness of Clam. Figure 4.7

C H APTER 4. EVALU ATIO N 48

0.03

0.025.
Clam 1-hop msg

. Clam 2-hop msg
Clam 3-hop msg

•— • MOL 1-hop msg
■— « MOL 2-hop msg
— MOL 3-hop msg

0.02

S
0.015

0.01

0.005
16K 32K 128K64K

message size, bytes

F ig u re 4.6: Mobile object message latency test.

plots run times of the netsort benchmark for Clam and MOL implementations. For small

processor configurations MOL-based implementation performs better. However, Clam out

performs MOL when more than 8 processors are used, and the difference is increasing when

we scale the size further. Clam is more scalable because of the non-blocking communication

algorithms used.

Finally, figure 4.8 plots runtime breakdown for the Parallel Constrained Delaunay Tri-

angulation (PCDT) application which is using PREMA load-balancing functionality imple

mented with Clam (in this test we had 512 subdomains of the 2-D pipe model, the algorithm

generated about 35 million triangles, the subdomains were assigned area bounds between

1.92e-2 and 0.26e-2; the test ran on 32 nodes of the Whirlwind subcluster of SciClone).

The plot shows, th a t the overhead introduced by Clam is within 5% of the to tal execution

time. The communication component of the execution time for no-balancing test is caused

by continuous polling in absence of work.

C H APTER 4. EVALU ATIO N 49

9

8

7

6I

5

4

3
2 4 8 16 32

number o f processors
64

F ig u r e 4.7: netsort4 benchmark performance.

4.3 Evaluation of the Location M anagem ent Policies

In order to evaluate the LMPs described in section 3.2, we first ran netsort4 and netsort5

benchmarks on a different number of nodes within the SciClone cluster using different

location policies. For configurations of up to 64 processors we used the Typhoon subcluster

with one process running on each node. 128-processor experiment was ran using all the

nodes of the Whirlwind, Typhoon and Tornado subclusters. We ran the benchmark with

4096 random numbers to sort (78 stages). All message and sortnodes were appended with

the payload of 10 Kbytes. We used MPI ACI for all of the experiments since MPI ACI

showed better performance for small messages. The directory updates use small messages

and overall most of the messages in our benchmarks are less than 64 Kbytes.

The total execution times of the netsort4 and netsortS benchmarks using different LMPs

are plotted in figures 4.9 and 4.10 respectively. PU LMP is not present on the plots, because

it was designed specifically for the partitioned testbed configuration of 32 processors only.

C H APTER 4. EVALUATIO N 50

application time
Clam overhead

□ □ MPI time

10 12 14 16 18 20 22 24 26 28 30
processor ID

80
■ ■ application time

M C lam overhead
□ □ MPI time70

60

50

§ 40

30

20

10

0
0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

processor ID

F ig u re 4.8: PCDT runtime breakdown without load-balancing and with PREM A diffusion load-
balancing.

This experiment evaluates the impact of LMP on the application performance. Results

show, tha t the total runtime grows when we increase the configuration for all of the policies.

JU and EU LMPs give the best results, while HB and BU LMPs are the worst.

There is a number of LMP properties which affect the overall performance of a com

munication intensive mobile object application. The requirements for an efficient LMP are

listed in section 3.2. Figures 4.11, 4.12 and 4.13 help explaining the performance results.

Figures 4.11 and 4.12 show the distribution of the number of hops application messages

had to travel for the netsort4 test. BU LMP for this application guarantees the shortest

path. Apparently, most of the directory updates arrive in time so tha t the subsequent

messages are delivered in one hop. HB LMP also gives very good distribution: most of the

messages reach destination in two hops, and almost no messages take more than four hops.

Messages travel longer paths as intensity of updates decreases from PC to JU and to no

updates in LF LMP. While for LF the maximum number of hops is 26, for PC it is 13.

However, the data from the message hop distribution (i.e., figures 4.11 and 4.12) are not

sufficient to explain the relative performance of the LMPs. For example, although HB LMP

6

CH APTER 4. EVALU ATIO N 51

950

•—• Lazy Forwarding
■—■ Jump Update
«— » Path Compression
*— a Broadcast Update
<— ► Home-Based
v—v Eager Update

900

850

800

750

700

650

600

.a 550

500

450

400

350

300

250

200
128

number o f processors

F ig u re 4.9: Execution times of netsort4-

provides the shortest travel distance, it has very bad performance overall. Figure 4.13 gives

the breakdown of internal Clam messages into three types. Application messages are initial

messages sent to an object as a result of mobile object message function invocation. These

messages may result in a sequence of forwardings, until they finally reach the processor

where the targeted object is located (forwarding messages). After tha t an LMP may send

one or more update messages, which are also included into the breakdown.

It can be seen from figure 4.13 tha t processor 0 performs more communication than

any other processor regardless of the LMP used. Application can always send a message

to an object using its mobile pointer. At the time a processor posts a message, its local

directory may not have any information about the target object. In this case, any LMP

within Clam will use the internal mobile pointer information to determine the target of the

initial message. Each mobile pointer in Clam includes the ID of the processor, where the

mobile pointer/object was created. This is the “home” processor of the mobile pointer,

CH APTER 4. EVALU ATIO N 52

350

■— • Lazy Forwarding
■— ■ Jump Update
a— a Path Compression
*—a Broadcast Update
<— ► Home-Based
v—v Eager Update

300

250

200

I
150

100

128
number o f processors

F ig u re 4.10: Execution times of netsort5.

and it will be used as the “best location guess” . In netsortJ^ we have 4096 objects evenly-

distributed among the processors during the initialization stage. All objects have the same

“home” - processor 0, where they were created. Obviously, when a message is sent to an

object for the first time from a specific processor, it will be sent to processor 0. If the

to tal number of processors is n, P P objects are local to each of the processors. The rest

(4096 — p p) objects are non-local, and the best guess for those objects is the “home”

processor 0. Hence, the probability of a message to be sent to processor 0 during the first

stage Pi can be defined as

4096 -4096 1
p __________n i__ _

1 4096 n

During each of the subsequent stages each of the sortnodes will be assigned randomly

to some new processor. Thus, the total number of the objects, which are known to the

directory of a specific processor can increase at most by p p (if all of the newly arrived

CH APTER 4. EVALUATIO N 53

250 k

200 k

fl P
° 150 k4) bO
co
4>
6

100 k

50 k

° 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
number of hops

F ig u re 4.11: Number of hops for a message to reach the object; netsort4, 32 processors,

objects were not known at the previous stage). Given an algorithm stage z, the probability

Pi of a message being sent to “home” processor 0 can be defined as

0 if i > n
1 — ^ if i < n

Apparently, for fixed problem size, the probability of sending a message to processor 0 is

growing as we increase the number of processors.

Figure 4.13 supports the observation th a t communication on processor 0 is the limiting

factor of the benchmark performance. The forwarding messages are significantly more

expensive than the update messages (10 Kbytes vs about 100 bytes). T hat is why HB and

LF with the high amount of forwarded messages do not perform well. We also see that

although JU and PC decrease the amount of forwarded messages, they fail to improve the

application performance much because of the existing bottleneck.

A sortnode is migrated to a different processor after each comparison in netsort.4 . Also,

each comparison is a result of receive.val message arriving to the object. Most of the time

a—o Lazy Forwarding
□—□ Jump Update
♦—* Path Compression
a — a Broadcast Update
•— * Home-Based

Eager Update

C H APTER 4. EVALU ATIO N 54

o—o Lazy Forwarding
□—□ Jump Update
♦—* Path Compression
a—* Broadcast Update
*— • Home-Based
*--« Eager Update

250 k

200 k

o 150 k

100 k

50 k

number of hops

F ig u re 4 .12: Number of hops for a message to reach the object; netsort4 , 64 processors.

an object migrates after it receives a message. Because of this, JU and EU LMPs have

roughly the same performance, and their effect of update is the same.

The performance of HB LMP does not change very much with the increase in the

number of processors. Messages to non-local objects are always routed through the “home”

processor 0. The rate of arrival for those messages increases however, tha t explains the

slight increase in the runtime for HB LMP.

The execution time of the benchmark is increasing almost linearly as we increase the

number of processors for BU LMP. The reason for this is tha t the time spent during the

initialization stage dominates the execution time. During the initialization all objects are

distributed among the processors, and for each object processor 0 has to send n updates.

The performance of BU LMP for netsort is determined by the update traffic. In netsort4

the initialization stage is becoming more expensive as we add more processors, while the

runtime update costs per processor decrease.

C H APTER 4. EVALUATIO N 55

Lazy Forwarding

Jump Update

i i

f l H H H H H B B H H H H B e f l H H H B H B H B B H H H H B H

Path Compression

i
8

£

Eager Update

9

F ig u re 4.13: Breakdown of point-to-point message types for netsort4, 32 processors.

The evaluated LMPs have totally different relative performance for the netsort5 bench

mark. Each processor in this benchmark creates equal number of mobile pointers, i.e., the

LM overheads at “home” processors are balanced. Figure 4.14 shows, th a t the communi

cation on processor 0 is no longer the determining factor in the application performance.

Although it performs slightly more communication (compared to other processors) during

the initial stage of the algorithm, the application performance depends more on the average

load of processors. We observe th a t out of the three forwarding LMPs, PC LMP gives the

best results, because it provides the shortest message path. Behavior of HB LMP is very dif-

CH APTER 4. EVALU ATIO N 56

Lazy Forwardnig

i

Jump Update

Path Compression Eager Update

1
8

F ig u re 4.14: Breakdown of point-to-point message types for netsort5 , 32 processors.

ferent. The bottleneck is eliminated and all the processor on average receive equal number

of messages. HB LMP also has very short forwarding path. This explains good scalability

of HB LMP for the netsort5 benchmark. The performance of BU LMP improves as we

increase the number of processors: the initialization costs and update costs per processor

decrease (fewer objects are created per processor).

In the next series of experiments we studied the effect of different application parameters

on the performance of the LMPs. One of such parameters is the mobile message payload.

Figure 4.15 shows th a t the difference in message size affects the execution time, but not the

CH APTER 4. EVALU ATIO N 57

700

650

600

• —• Lazy Forwarding
■— ■ Jump Update
«— » Path Compression
*—a Broadcast Update

550

500

Eager Update450

u 400

350

300

250

200

150

100
128

number of processors

F ig u re 4 .15: netsort4 benchmark with 1 Kbyte message payload.

relative performance of different LMPs (the message is 10 times smaller compared to the

previous test with netsort4)-

Access-to-mobility ratio A in PDC applications is analogous to CMR in cellular networks.

For a given application, A = where a is total number of accesses (search operations) to

objects and m is the to tal number of object migrations. A has been used as a parameter

in the study of forwarding techniques performed in [27]. The netsort4 and netsort5 bench

marks have been modified to experiment with different values of A and see the impact of

those changes on the application performance. Figures 4.16 and 4.17 show performance

results of running netsortJf. and netsort5 benchmarks with A « 20 (a sortnode is migrated

once every 20 stages).

Our results show, th a t the change in access-to-mobility ratio can change the performance

of an application when using different LMPs. BU LMP achieves the best execution times

for netsort4 when A ~ 20, while for the same test with A « 1 it had poor performance.

C H APTER 4. EVALUATIO N 58

650

600

550

500

450

400

o 350

300

250

200
• —• Lazy Forwarding
■—■ Jump Update
«— * Path Compression
a—* Broadcast Update

150

100
Eager Update

128
number o f processors

F ig u re 4.16: Execution times of netsort4 with A « 20.

The to tal number of movements decreased. The update operation is very expensive for BU

LMP, and higher values of A allow for better amortization of the update costs.

The significant difference between EU and JU LMP can be observed from figure 4.17.

EU LMP sends updates when an object moves, while JU updates the sender immediately

after the message arrives. The distribution hops for mobile messages is shown in figure 4.18.

Apparently, the average length of message path is shorter for JU LMP than for EU LMP,

thus JU is more effective overall.

The netsort4 experiment shows, th a t the change in A does not impact the performance

of HB LMP. All messages are still routed through the single “home” node, and the total

number of messages is the same as in the previous test. The slight improvement in runtime

is due to the reduction of communication on processor 0 (less updates are sent). The level

of concurrency is lower, and hence the information in 0’s directory is correct more often.

The same experiment with different A for netsort5 shows the reduction in the execution

CH APTER 4. EVALU ATIO N 59

150

140 Lazy Forwarding
Jump Update
Path Compression
Broadcast Update
Home-Based
Eager Update

130

120

110

100
ou
§■a

128
number of processors

F ig u re 4.17: Execution tim es of netsort5 with A ~ 20.

time for all LMPs. BU LMP again performs much better than in the netsort5 with A & 1

because of significantly fewer object migrations and thus fewer updates. LF LMP has very

bad performance compared with other algorithms. The absence of update mechanisms leads

to significant performance degradation in applications with high access-to-mobility ratio.

The last set of netsort experiments was aimed to evaluate the impact of the network on

the performance of the studied policies. PU LMP has been designed specifically to address

the issue of network partitioning. For this test we configured PU LMP implementation

so tha t the processors are partitioned according to the switch of the network testbed they

are attached. Link bandwidth is 10 Mbps between partitions and 100 Mbps within each

partition.

We ran netsort4 benchmark with A « 1 and message payload 1 Kbyte on the experi

mental testbed with 10/100 Mbps configuration. We discovered, tha t for tha t experiment

PU and HB LMPs outperform all other algorithms. The to tal execution time of the appli-

CH APTER 4. EVALU ATIO N 60

350 k

o—o Lazy Forwarding
□—□ Jump Update
♦— * Path Compression
a — a Broadcast Update
•— • Home-Based
»-->< Eager Update

300 k

250 k

g 200 k

S3 150 k

100 k

50 k

number of hops

F ig u re 4.18: Number of hops for a message to reach the object, A « 20; netsort4 , 32 processors.

cation on the regular network configuration and on the experimental testbed is shown in

figure 4.19. The computing nodes used in this experiment are the same as in the previous

case, where we also used 32 nodes of Typhoon subcluster.

The results of HB LMP are explained by the previously shown data: most of the mes

sages reach the target in two hops. W hen the number of hops increases, so does the prob

ability of a message to be forwarded through the inter-partition network link. PU LMP

achieves high efficiency for the two reasons: (1) the location information is updated with

lower network costs compared to BU LMP; (2) it provides good average for the forwarding

chain length.

We used PCDT end-to-end benchmark to perform analogous study of the evaluated

LMPs. On each iteration of the benchmark we choose 20% of the subdomains which require

processing by the PCDT algorithm. These “heavy” subdomains have to be balanced among

the processors. The test case consisted of 20 iterations. Aggregation level was set to

C H APTER 4. EVALU ATIO N 61

50. Unequal load distribution was balanced by the ILB layer of PREMA using work-

stealing method [13]. The execution times of this benchmark for different LMPs is given in

figure 4.20, and the hop distribution in figure 4.21.

The difference in hop distribution caused by difference in LMP is similar to the one we

observed in the netsort benchmarks. However, the execution time is not affected as much as

it was in our previous experiments. All of the LMPs have about the same performance (the

difference is within 10% except for the BU LMP). We identified a number of possible reasons

for such behavior. The significant difference between netsort and PCDT benchmarks is that

the la tter is using ILB module. The ILB implementation is multi-threaded: the polling

thread is running concurrently with the main application thread [12]. Another difference

of the PCDT test is the significant increase of the computational complexity compared

to communication-dependent netsort. As a side-effect of polling, forwarding and update

messages can be processed on the background simultaneously with the application handler

execution. This would definitely hide the latencies introduced by LMPs.

Another interesting observation we have made is tha t the choice of LMP is somehow

affecting the ILB work migration decisions. Figure 4.22 shows, th a t there is significant

difference in the total number of objects migrated for different LMPs (the difference is

especially large between JU and HB LM Ps). The reasons for such a difference are not clear

to us and have to be studied further.

CH APTER 4. EVALU ATIO N

4.4 Discussion

62

The performance study described in this chapter shows, th a t location management policy

may have significant impact on the application performance. The im portant conclusion

of the evaluation is th a t the choice of mechanisms used for location management for a

particular application cannot be disregarded.

The comparison of results we obtained from netsort4 and netsort5 benchmarks shows

how im portant it is to have a balanced assignment of the mobile objects to “home” pro

cessors. This assignment can be handled by the runtime system and should be evaluated

in the future. Another implementation detail which should be considered is multithreaded

runtime system implementation. In the context of location management, multithreading

together with the idea of multiple communication channels can eliminate interference of

application with LMP.

C H APTER 4. EVALU ATIO N

1600
1 4 "

u m 10/100 Mbps
■ ■ 100 Mbps1400 375

_1310 r4307 ’256
1200

f4109
[O29

1000
oo
oi" 800
6

600

400
.327

200 I59,147 ,130,124 ,1171

EUBU
LMP

PU HBLF JU PC

F ig u re 4 .19: netsort4 execution time on 100 Mbps and 10/100 Mbps configurations.

700

650 Lazy Forwarding
Jump Update
Path Compression
Broadcast Update
Home-Based
Eager Update

600

550

500

a 450

400

350

300

250

200

150
128

number of processors

F ig u re 4.20: PC D T benchmark execution time.

C H APTER 4. EVALU ATIO N 64

60 k

—o Lazy Forwarding
—□ Jump Update
—* Path Compression
—* Broadcast Update
—* Home-Based

k Eager Update

50 k

40k

a§O
a 30kC3

I
20 k

10 k

number of hops

F ig u re 4.21: Number of hops for a message to reach the object; PCDT benchmark, 32 processors.

180

Lazy Forwarding, 1383 moves
Jump Update, 1524 moves
Path Compression, 1419 moves
Broadcast Update, 1339 moves
Home-Based, 1125 moves

160

140

120

■§ 100

number of migrations

F ig u re 4.22: Difference in the object migration intensity as a side-effect of changing LMP.

Chapter 5

Conclusions and Future Work

Efficiency, performance, and the costs of development and maintenance for scientific com

puting applications are directly dependent on the quality and capabilities of the runtime

software. Clam, the runtime system we present in this thesis, addresses these issues along

with a number of previously unresolved runtime support problems within the PREMA

framework. We made PREMA more stable, improved its portability, performance, and

usability by rebalancing the three fundamental issues: correctness, performance, and ease-

of-use.

The second major contribution of our work is in the survey, comparison and evaluation

of location management techniques for parallel distributed computation applications. The

problem of location management in PDC has not been carefully examined previously within

the described model. Our results show, tha t location management is extremely im portant

for some PDC applications. Moreover, we show tha t the optimal choice of a LMP for certain

highly coupled communication intensive applications depends on multiple factors: number

of nodes involved in the computation, properties of the communication network, migration

and communication patterns of the application. At the same time, our preliminary data

also show th a t for loosely coupled applications location management does not play a sig

65

C H APTER 5. CONCLUSIONS AND FU TU RE W O RK 66

nificant role in the application performance (PCDT benchmark). The conclusion from our

preliminary evaluation tha t location management must be considered during the applica

tion development. It may be crucial for an application to have the ability to choose the

most appropriate LMP. Clam has been designed to provide this choice to the application.

The study of location management we have done answered the main question we asked:

”Is location management relevant?” There is a number of issues we want to investigate

next. A separate study has to be done on how to choose the optimal LMP for a specific

application and platform configuration. In this thesis we have identified and implemented

only the most intuitive location management techniques. W ith the results we have collected

in this evaluation, new LMPs can be designed and implemented within Clam which com

bine features of the evaluated LMPs and thus meet application needs better. We plan to

investigate the feasibility and relevance of dynamic LM, where the most appropriate LMP

would be chosen based on the current properties of the application and/or environment

(network). We also need to study how different load-balancing algorithms are affected by

LM.

Finally, our results show tha t network bandwidth impacts the relative performance of

LMPs. Location management techniques which take network properties into account have

better performance than LMPs which do not take this into consideration. Further, we need

to explore in detail how other param eters of the interconnect (network latency, packet loss

etc.) affect location management.

Bibliography

[1] LAM General User’s Mailing List Archives. < http://www.lam-mpi.org/
MailArchives/lam/msg07032.php> (8 November 2003).

[2] LAM MPI. < http://www.lam-mpi.org> (3 November 2003).

[3] MPI: A Message-Passing Interface Standard. < http://paxallel.ru/docs/
Parallel/mpil. 1/mpi-report .html> (27 August 2003).

[4] SciClone Cluster Project. < http://www.compsci.wm.edu/SciClone> (27 August
2003).

[5] Voyager. < http://www.recursionsw.com/products/voyager/voyager.asp> (23
October 2003).

[6] Jeff Skuyres (LAM MPI developer). Personal communication, October 2003.

[7] Laxmikant Kale, Raveen Kumar, Orion Lawlor (C harm ++ developers). Personal com
munication, October 2003.

[8] I. A k y i l d i z , J. M c N a i r , J. H o , H . U z u n a l i o g l u , a n d W. W a n g . Mobility Man
agement in Next-Generation Wireless Systems. In Proceedings of the IEEE , volume 87,
pages 1347-1384, August 1999.

[9] S a r a A l o u f , F a b r i c e H u e t , a n d P h i l i p p e N a in . Forwarders vs. Centralized
Servers: An Evaluation of Two Approaches of Locating Mobile Agents. Performance
Evaluation, 49(1-4):299-319, 2002.

[10] E . A r j o m a n d i , W . O ’F a r r e l l , I. K a l a s , G . K o b l e n t s , F . E i g l e r , a n d G . G a o .
A BC++: Concurrency by Inheritance in C + + . IB M Systems Journal, 34(1): 120—137,
1995.

[11] B. A w e r b u c h a n d D. P e l e g . Online Tracking of Mobile Users. Journal o f the
Association for Computing Machinery, 42(5):1021-1058, September 1995.

[12] K. B a r k e r a n d N. C h r i s o c h o i d e s . An Evaluation of a Framework for the Dynamic
Load-Balancing of Highly Adaptive and Irregular Parallel Applications. In Proceedings
of Super Computing’03, 2003.

67

http://www.lam-mpi.org/%e2%80%a8MailArchives/lam/msg07032.php
http://www.lam-mpi.org/%e2%80%a8MailArchives/lam/msg07032.php
http://www.lam-mpi.org
http://paxallel.ru/docs/%e2%80%a8Parallel/mpil.%201/mpi-report%20.html
http://paxallel.ru/docs/%e2%80%a8Parallel/mpil.%201/mpi-report%20.html
http://www.compsci.wm.edu/SciClone
http://www.recursionsw.com/products/voyager/voyager.asp

B IB LIO G RAPH Y 68

[13] K . B a r k e r , N. C h r i s o c h o i d e s , A. C h e r n i k o v , a n d K . P i n g a l i . A Load Balanc
ing Framework for Adaptive and Asynchronous Applications. IEEE Transactions on
Parallel and Distributed Computing, 14(12), December 2003.

[14] K e v in B a r k e r . Load-balancing Support for Adaptive and Irregular Applications on
Distributed Memory Parallel Machines. PhD thesis, The College of William and Mary.
Expected to be completed in 2004.

[15] K e v in B a r k e r , N i k o s C h r i s o c h o i d e s , J e f f r e y D o b e l l a e r e , D e m ia n N a v e ,
a n d K e s h a v P i n g a l i . D ata Movement and Control Substrate for Parallel Adaptive
Applicatios. Concurrency: Practice and Experience, 14(2):T7—101, 2002.

[16] J . K. B e n n e t t . The Design and Implementation of D istributed Smalltalk. In Pro
ceedings of the Conference on Object- Oriented Programming Systems, Languages, and
Applications (OOPSLA), Norman Meyrowitz, editor, volume 22, pages 318-330, New
York, NY, 1987. ACM Press.

[17] J e f f B o n w i c k . The Slab Allocator: An Object-Caching Kernel Memory Allocator.
In USENIX Summer, pages 87-98, 1994.

[18] D a n i e l P. B o v e t a n d M a r c o C e s a t i . Understanding the Linux Kernel. O’Reilly,
2nd edition, 2003.

[19] J. C a o , X. F e n g , J. Lu, a n d S. K. D a s . Mailbox-Based Scheme for Mobile Agent
Communications. Computer, 35(9):54—60, September 2002.

[20] J e f f r e y S. C h a s e , F r a n z G. A m a d o r , E d w a r d D. L a z o w s k a , H e n r y M. L e v y ,
a n d R i c h a r d J . L i t t l e f i e l d . The Amber System: Parallel Programming on a
Network of Multiprocessors. In Proceedings of the 12th AC M Symposium on Operating
Systems Principles, pages 147-158, Litchfield Park AZ USA, 1989.

[21] P . C h e w , N. C h r i s o c h o i d e s , a n d F. S u k u p . Parallel constrained delaunay mesh
ing. In Proceedings of 1997 Joint A SM E /A SC E /SE S Sum mer Meeting, Special Sym
posium on Trends in Unstructured Mesh Generation, 1997.

[22] N. C h r i s o c h o i d e s , K. B a r k e r , D. N a v e , a n d C. H a w b l i t z e l . Mobile Object
Layer: A Runtime Substrate for Parallel Adaptive and Irregular Computations. Ad
vances in Engineering Software, 31(8-9):621-637, 1998.

[23] T h o m a s C o r m e n , C h a r l e s L e i s e r s o n , R o n a l d R i v e s t , a n d C l i f f o r d S t e i n .
Introduction to Algorithms. MIT Press, 2nd edition, 2001.

[24] E d s g e r W . D i j k s t r a . Shmuel Safra’s version of term ination detection, 1987.
Manuscript EWD998-7, <http: //www. cs. utexas. edu/users/EWD/ewd09xx/EWD998.
PDF> (2 November 2003).

[25] E IA /T IA . Cellular Radio-telecommunications Intersystem Operations. Technical Re
port IS-41 revision C, 1995.

BIBLIO G R A P H Y 69

[26] E T S I/T C . Mobile Application Part (MAP) Specification, version 4.8.0. Technical
Report recommendation GSM 09.02, 1994.

[27] R o b e r t J. F o w l e r . Decentralized Object Finding Using Forwarding Addresses. PhD
thesis, University of Washington, 1985.

[28] M a u r i c e H e r l i h y a n d M i c h a e l P. W a r r e s . A Tale of Two Directories: Imple
menting Distributed Shared Objects in Java. Concurrency: Practice and Experience,
12(7):555-572, 2000.

[29] R. J a in a n d Y - B . L in . An Auxiliary User Location Strategy Employing Forwarding
Pointers to Reduce Network Impacts of PCS. Wireless Networks, 1(2): 197-210, July
1995.

[30] R. J a in , Y -B . L in , C. L o , a n d S. M o h a n . A Caching Strategy to Reduce Network
Impacts of PCS. IEEE Journal on Selected Areas in Communication, 12(8):1434-1444 ,
October 1994.

[31] E r i c J u l , H e n r y L e v y , N o r m a n H u t c h i n s o n , a n d A n d r e w B l a c k . Fine-
Grained Mobility in the Emerald System. ACM Transactions on Computer Systems,
6(1):109-133, February 1988.

[32] N. K a r n i k a n d A. T r i p a t h i . Design Issues in Mobile-Agent Programming Systems.
IEEE Concurrency, 6(3):52-61, 1998.

[33] P . K e l e h e r . Decentralized replicated-object protocols. In Proceedings of the 18th
Annual AC M Symposium on Principles of Distributed Computing (PO D C’99j, 1999.

[34] P . K r i s h n a , N. H. V a id y a , a n d D. K. P r a d h a n . Static and Dynamic Location
Management in a Distributed Mobile Environment. Technical Report 94-030, Dept, of
Computer Science, Texas A&M University, 1994.

[35] D. B. L a n g e a n d M. O s h im a . Seven Good Reasons for Mobile Agents. Communi
cations o f the ACM, 42(3):88-89, March 1999.

[36] O. L a w l o r a n d L. V. K a l e . Supporting Dynamic Parallel Object Arrays. Concur
rency and Computation: Practice and Experience, 15:371-393, 2003.

[37] B a r b a r a L i s k o v , M a r k D a y , a n d L iu b a S h r i r a . Distributed Object Management
in Thor. In Proceedings of International Workshop on Distributed Object Management,
pages 79-91, 1992.

[38] D. M i l o j i c i c , V. K a l o g e r a k i , R. L u k o s e , K. N a g a r a j a , J. P r u y n e ,
B. R i c h a r d , S. R o l l i n s , a n d Z. X u . Peer-to-Peer Computing. Technical Report
HPL-2002-57, HP Laboratories Palo Alto, 2002.

[39] P . M u l l e r , F. v a n M e g e n , a n d T. K l e i n b e r g e r . A New Approach for
Locating Moving Programs Based on Experiences from the PLMN Domain.
<http: //www. icsy. de/~vanmegen/paper/Reasons\°/020f or\7020aY/»20specialize0/0
d\7»20Location\°/«20Service.pdf> (23 October 2003), 2001.

B IB LIO G RAPH Y 70

[40] E v a g g e l i a P i t o u r a a n d G e o r g e S a m a r a s . Locating Objects in Mobile Comput
ing. Transactions on Knowledge and Data Engineering, 13(4):5T1—592, July/August
2001 .

[41] D. P l a i n f o s s e a n d M. S h a p ir o . A Survey of D istributed Garbage Collection Tech
niques. In Proceedings o f International Workshop on Memory Management, pages
211-249, 1995.

[42] M. P o w e l l a n d B . M u l l e r . Process Migration in DEM OS/M P. Operating Systems
Review, 17(5), October 1983.

[43] S. R a j a g o p a l a n a n d B . R . B a d r in a t h . An Adaptive Location Management S trat
egy for Mobile IP. In Proceedings of the 1st AC M International Conference on Mobile
Computing and Networking, 1995.

[44] M. S h a p ir o , P. D ic k m a n , a n d D. P l a i n f o s s e . SSP Chains: Robust, Distributed
References Supporting Acyclic Garbage Collection. Technical Report 1799, 1992.

[45] J. R. S h e w c h u k . Tetrahedral mesh generation by delaunay refinement. In Proceedings
of Symposium on Computational Geometry, pages 86-95, 1998.

[46] N. S h iv a k u m a r a n d J . W id o m . User Profile Replication for Faster Location Lookup
in Mobile Environments. In Proceedings of the 1st AC M International Conference on
Mobile Computing and Networking, pages 161-169, 1995.

[47] A. T r ip a t h i , N. K a r n ik , T. A h m e d , R. S in g h , A. P r a k a s h , V. K a k a n i ,
M. V o r a , a n d M. P a t h a k . Design of the A janta System for Mobile Agent Pro
gramming. Journal of Systems and Software, 62(2): 123-140, May 2002.

[48] T. v o n E ic k e n , D .E. C u l l e r , S.C. G o l d s t e i n , a n d K .E. S c h a u s e r . Active
Messages: A Mechanism for Integrated Communication and Computation. In 19th
Annual Symposium on Computer Architecture, 1992.

[49] P . W o j c ie c h o w s k i . Algorithms for Location-Independent Communication between
Mobile Agents. Technical Report DSC-2001/13, Departement Systemes de Communi
cation, EFPL, 2001.

71

VITA

Andriy Fedorov

Andriy Fedorov was born in Berdyansk, Ukraine on May 10, 1980. He graduated from

Ternopil High School No. 10 in 1997. In 2001 he completed requirements for BS degree in

Computer Science at Institute of Computer Information Technologies of Ternopil Academy

of National Economy, Ukraine. Starting from 2001 he is pursuing Ph.D. degree at the

College of William and Mary.

	William & Mary
	W&M ScholarWorks
	2003

	Location Management in a Mobile Object Runtime Environment
	andriy Fedorov
	Recommended Citation

	tmp.1539892610.pdf.ww24_

